Infinity-Borel Set - Incorrect Definition

Incorrect Definition

It is very tempting to read the informal description at the top of this article as claiming that the ∞-Borel sets are the smallest class of subsets of containing all the open sets and closed under complementation and wellordered union. That is, one might wish to dispense with the ∞-Borel codes altogether and try a definition like this:

For each ordinal α define by transfinite recursion Bα as follows:
  1. B0 is the collection of all open subsets of .
  2. For a given even ordinal α, Bα+1 is the union of Bα with the set of all complements of sets in Bα.
  3. For a given even ordinal α, Bα+2 is the set of all wellordered unions of sets in Bα+1.
  4. For a given limit ordinal λ, Bλ is the union of all Bα for α<λ
It follows from the Burali-Forti paradox that there must be some ordinal α such that Bβ equals Bα for every β>α. For this value of α, Bα is the collection of "∞-Borel sets".

This set is manifestly closed under well-ordered unions, but without AC it cannot be proved equal to the ∞-Borel sets (as defined in the previous section). Specifically, it is instead the closure of the ∞-Borel sets under all well-ordered unions, even those for which a choice of codes cannot be made.

Read more about this topic:  Infinity-Borel Set

Famous quotes containing the words incorrect and/or definition:

    Nothing can be more incorrect than the assumption one sometimes meets with, that physics has one method, chemistry another, and biology a third.
    Thomas Henry Huxley (1825–95)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)