Infinitesimal Strain Theory - Strain Tensor in Cylindrical Coordinates

Strain Tensor in Cylindrical Coordinates

In cylindrical polar coordinates, the displacement vector can be written as

 \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_z~\mathbf{e}_z

The components of the strain tensor in a cylindrical coordinate system are given by

 \begin{align} \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\ \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\ \varepsilon_{zz} & = \cfrac{\partial u_z}{\partial z} \\ \varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\ \varepsilon_{\theta z} & = \cfrac{1}{2}\left(\cfrac{\partial u_\theta}{\partial z} + \cfrac{1}{r}\cfrac{\partial u_z}{\partial \theta}\right) \\ \varepsilon_{zr} & = \cfrac{1}{2}\left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right) \end{align}

Read more about this topic:  Infinitesimal Strain Theory

Famous quotes containing the word strain:

    Realistic about how much one person can accomplish in a given day, women expect to have to make some trade-offs between work and family. Families, however, have absorbed all the stress and strain they possibly can. The entire responsibility for accommodation is taking place on the home side of the equation.
    Deborah J. Swiss (20th century)