In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product
is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence an as n increases without bound must be 1, while the converse is in general not true.
The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète and John Wallis (Wallis product):
Read more about Infinite Product: Convergence Criteria, Product Representations of Functions
Famous quotes containing the words infinite and/or product:
“Something is infinite if, taking it quantity by quantity, we can always take something outside.”
—Aristotle (384322 B.C.)
“Mans main task in life is to give birth to himself, to become what he potentially is. The most important product of his effort is his own personality.”
—Erich Fromm (19001980)