In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product
is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence an as n increases without bound must be 1, while the converse is in general not true.
The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète and John Wallis (Wallis product):
Read more about Infinite Product: Convergence Criteria, Product Representations of Functions
Famous quotes containing the words infinite and/or product:
“A different world can be created or re-createdbut not until we stop enshrining the economic values of invisible labor, infinite and obsessive growth, and a slow environmental suicide.”
—Gloria Steinem (b. 1934)
“The product of mental laborsciencealways stands far below its value, because the labor-time necessary to reproduce it has no relation at all to the labor-time required for its original production.”
—Karl Marx (18181883)