In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product
is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence an as n increases without bound must be 1, while the converse is in general not true.
The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète and John Wallis (Wallis product):
Read more about Infinite Product: Convergence Criteria, Product Representations of Functions
Famous quotes containing the words infinite and/or product:
“Vast chain of Being, which from God began,
Natures aethereal, human, angel, man,
Beast, bird, fish, insect! what no eye can see,
No glass can reach; from Infinite to thee,
From thee to Nothing!”
—Alexander Pope (16881744)
“The guys who fear becoming fathers dont understand that fathering is not something perfect men do, but something that perfects the man. The end product of child raising is not the child but the parent.”
—Frank Pittman (20th century)