Transfer Function Derivation
Digital filters are often described and implemented in terms of the difference equation that defines how the output signal is related to the input signal:
where:
- is the feedforward filter order
- are the feedforward filter coefficients
- is the feedback filter order
- are the feedback filter coefficients
- is the input signal
- is the output signal.
A more condensed form of the difference equation is:
which, when rearranged, becomes:
To find the transfer function of the filter, we first take the Z-transform of each side of the above equation, where we use the time-shift property to obtain:
We define the transfer function to be:
Considering that in most IIR filter designs coefficient is 1, the IIR filter transfer function takes the more traditional form:
Read more about this topic: Infinite Impulse Response
Famous quotes containing the words transfer and/or function:
“I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a pointbut that I can startle myself ... into wakefulnessand thus transfer the point ... into the realm of Memoryconvey its impressions,... to a situation where ... I can survey them with the eye of analysis.”
—Edgar Allan Poe (18091849)
“The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.”
—Cyril Connolly (19031974)