Infinite Divisibility - in Philosophy

In Philosophy

This theory is explored in Plato's dialogue Timaeus and was also supported by Aristotle. Andrew Pyle gives a lucid account of infinite divisibility in the first few pages of his Atomism and its Critics. There he shows how infinite divisibility involves the idea that there is some extended item, such as an apple, which can be divided infinitely many times, where one never divides down to point, or to atoms of any sort. Many professional philosophers claim that infinite divisibility involves either a collection of an infinite number of items (since there are infinite divisions, there must be an infinite collection of objects), or (more rarely), point-sized items, or both. Pyle states that the mathematics of infinitely divisible extensions involve neither of these — that there are infinite divisions, but only finite collections of objects and they never are divided down to point extension-less items.

Zeno questioned how an arrow can move if at one moment it is here and motionless and at a later moment be somewhere else and motionless, like a motion picture.

Zeno's reasoning, however, is fallacious, when he says that if everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless. This is false, for time is not composed of indivisible moments any more than any other magnitude is composed of indivisibles. —Aristotle, Physics VI:9, 239b5

In reference to Zeno's paradox of the arrow in flight, Alfred North Whitehead writes that "an infinite number of acts of becoming may take place in a finite time if each subsequent act is smaller in a convergent series":

The argument, so far as it is valid, elicits a contradiction from the two premises: (i) that in a becoming something (res vera) becomes, and (ii) that every act of becoming is divisible into earlier and later sections which are themselves acts of becoming. Consider, for example, an act of becoming during one second. The act is divisible into two acts, one during the earlier half of the second, the other during the later half of the second. Thus that which becomes during the whole second presupposes that which becomes during the first half-second. Analogously, that which becomes during the first half-second presupposes that which becomes during the first quarter-second, and so on indefinitely. Thus if we consider the process of becoming up to the beginning of the second in question, and ask what then becomes, no answer can be given. For, whatever creature we indicate presupposes an earlier creature which became after the beginning of the second and antecedently to the indicated creature. Therefore there is nothing which becomes, so as to effect a transition into the second in question. —A.N. Whitehead, Process and Reality

Read more about this topic:  Infinite Divisibility

Famous quotes containing the word philosophy:

    Frankly, I do not like the idea of conversations to define the term “unconditional surrender.” ... The German people can have dinned into their ears what I said in my Christmas Eve speech—in effect, that we have no thought of destroying the German people and that we want them to live through the generations like other European peoples on condition, of course, that they get rid of their present philosophy of conquest.
    Franklin D. Roosevelt (1882–1945)

    Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.
    Paul Tillich (1886–1965)