In Order Theory
To say that the field of rational numbers is infinitely divisible (i.e. order theoretically dense) means that between any two rational numbers there is another rational number. By contrast, the ring of integers is not infinitely divisible.
Infinite divisibility does not imply gap-less-ness: the rationals do not enjoy the least upper bound property. That means that if one were to partition the rationals into two non-empty sets A and B where A contains all rationals less than some irrational number (π, say) and B all rationals greater than it, then A has no largest member and B has no smallest member. The field of real numbers, by contrast, is both infinitely divisible and gapless. Any linearly ordered set that is infinitely divisible and gapless, and has more than one member, is uncountably infinite. For a proof, see Cantor's first uncountability proof. Infinite divisibility alone implies infiniteness but not uncountability, as the rational numbers exemplify.
Read more about this topic: Infinite Divisibility
Famous quotes containing the words order and/or theory:
“The largest business in American handled by a woman is the Money Order Department of the Pittsburgh Post-office; Mary Steel has it in charge.”
—Lydia Hoyt Farmer (18421903)
“The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.”
—Rheta Childe Dorr (18661948)