In Order Theory
To say that the field of rational numbers is infinitely divisible (i.e. order theoretically dense) means that between any two rational numbers there is another rational number. By contrast, the ring of integers is not infinitely divisible.
Infinite divisibility does not imply gap-less-ness: the rationals do not enjoy the least upper bound property. That means that if one were to partition the rationals into two non-empty sets A and B where A contains all rationals less than some irrational number (π, say) and B all rationals greater than it, then A has no largest member and B has no smallest member. The field of real numbers, by contrast, is both infinitely divisible and gapless. Any linearly ordered set that is infinitely divisible and gapless, and has more than one member, is uncountably infinite. For a proof, see Cantor's first uncountability proof. Infinite divisibility alone implies infiniteness but not uncountability, as the rational numbers exemplify.
Read more about this topic: Infinite Divisibility
Famous quotes containing the words order and/or theory:
“Instead of killing and dying in order to produce the being that we are not, we have to live and let live in order to create what we are.”
—Albert Camus (19131960)
“It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.”
—Jean Baudrillard (b. 1929)