Infinite Descending Chain

Given a set S with a partial order ≤, an infinite descending chain is an infinite, strictly decreasing sequence of elements x1 > x2 > ... > xn > ...

As an example, in the set of integers, the chain −1, −2, −3, ... is an infinite descending chain, but there exists no infinite descending chain on the natural numbers, as every chain of natural numbers has a minimal element.

If a partially ordered set does not possess any infinite descending chains, it is said then, that it satisfies the descending chain condition. Assuming the axiom of choice, the descending chain condition on a partially ordered set is equivalent to requiring that the corresponding strict order is well-founded. A stronger condition, that there be no infinite descending chains and no infinite antichains, defines the well-quasi-orderings. A totally ordered set without infinite descending chains is called well-ordered.

Famous quotes containing the words infinite, descending and/or chain:

    Moreover, the universe as a whole is infinite, for whatever is limited has an outermost edge to limit it, and such an edge is defined by something beyond. Since the universe has no edge, it has no limit; and since it lacks a limit, it is infinite and unbounded. Moreover, the universe is infinite both in the number of its atoms and in the extent of its void.
    Epicurus (c. 341–271 B.C.)

    Man is a stream whose source is hidden. Our being is descending into us from we know not whence. The most exact calculator has no prescience that somewhat incalculable may not balk the very next moment. I am constrained every moment to acknowledge a higher origin for events than the will I call mine.
    Ralph Waldo Emerson (1803–1882)

    Man ... cannot learn to forget, but hangs on the past: however far or fast he runs, that chain runs with him.
    Friedrich Nietzsche (1844–1900)