Infinite Conjugacy Class Property

In mathematics, a group is said to have the infinite conjugacy class property, or to be an icc group, if the conjugacy class of every group element but the identity is infinite. In abelian groups, every conjugacy class consists of only one element, so icc groups are, in a way, as far from being abelian as possible.

The von Neumann group algebra of a group is a factor if and only if the group has the infinite conjugacy class property. It will then be, provided the group is nontrivial, of type II1, i.e. it will possess a unique, faithful, tracial state.

Examples for icc groups are free groups on at least two generators, or, more generally, nontrivial free products.

Famous quotes containing the words infinite, class and/or property:

    Each man has his own vocation. The talent is the call. There is one direction in which all space is open to him. He has faculties silently inviting him thither to endless exertion. He is like a ship in the river; he runs against obstructions on every side but one; on that side all obstruction is taken away, and he sweeps serenely over a deepening channel into an infinite sea.
    Ralph Waldo Emerson (1803–1882)

    In verity ... we are the poor. This humanity we would claim for ourselves is the legacy, not only of the Enlightenment, but of the thousands and thousands of European peasants and poor townspeople who came here bringing their humanity and their sufferings with them. It is the absence of a stable upper class that is responsible for much of the vulgarity of the American scene. Should we blush before the visitor for this deficiency?
    Mary McCarthy (1912–1989)

    The second property of your excellent sherris is the warming
    of the blood.
    William Shakespeare (1564–1616)