In mathematics, a group is said to have the infinite conjugacy class property, or to be an icc group, if the conjugacy class of every group element but the identity is infinite. In abelian groups, every conjugacy class consists of only one element, so icc groups are, in a way, as far from being abelian as possible.
The von Neumann group algebra of a group is a factor if and only if the group has the infinite conjugacy class property. It will then be, provided the group is nontrivial, of type II1, i.e. it will possess a unique, faithful, tracial state.
Examples for icc groups are free groups on at least two generators, or, more generally, nontrivial free products.
Famous quotes containing the words infinite, class and/or property:
“They will visit you at your convenience, whether you are lonesome or not, on rainy days or fair. They propose themselves as either transient acquaintances or permanent friends. They will stay as long as you like, departing or returning as you wish. Their friendship entails no obligation. Best of all, and not always true of our merely human friends, they have Cleopatras infinite variety.”
—Clifton Fadiman (b. 1904)
“You see, after the warand dont forget it lasted a hundred yearsthousands of us went from door to door, asking for honest work, and we were whipped for begging. The ruling class didnt say, Work or starve. They said Starve, for you shall not work.”
—Sonya Levien (18951960)
“Let the amelioration in our laws of property proceed from the concession of the rich, not from the grasping of the poor. Let us understand that the equitable rule is, that no one should take more than his share, let him be ever so rich.”
—Ralph Waldo Emerson (18031882)