Infinite-dimensional Holomorphy - Holomorphic Functions Between Banach Spaces

Holomorphic Functions Between Banach Spaces

More generally, given two Banach spaces X and Y over the complex numbers and an open set U in X, f : UY is called holomorphic if the Fréchet derivative of f exists at every point in U. One can show that, in this more general context, it is still true that a holomorphic function is analytic, that is, it can be locally expanded in a power series. It is no longer true however that if a function is defined and holomorphic in a ball, its power series around the center of the ball is convergent in the entire ball; for example, there exist holomorphic functions defined on the entire space which have a finite radius of convergence.

Read more about this topic:  Infinite-dimensional Holomorphy

Famous quotes containing the words functions and/or spaces:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)

    Le silence éternel de ces espaces infinis m’effraie. The eternal silence of these infinite spaces frightens me.
    Blaise Pascal (1623–1662)