Concepts Expressible in Infinitary Logic
In the language of set theory the following statement expresses foundation:
Unlike the axiom of foundation, this statement admits no non-standard interpretations. The concept of well foundedness can only be expressed in a logic which allows infinitely many quantifiers in an individual statement. As a consequence many theories, including Peano arithmetic, which cannot be properly axiomatised in finitary logic, can be in a suitable infinitary logic. Other examples include the theories of non-archimedean fields and torsion-free groups. These three theories can be defined without the use of infinite quantification; only infinite junctions are needed.
Read more about this topic: Infinitary Logic
Famous quotes containing the words concepts and/or logic:
“It is impossible to dissociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept, a word is needed; to portray a phenomenon, a concept is needed. All three mirror one and the same reality.”
—Antoine Lavoisier (17431794)
“The American Constitution, one of the few modern political documents drawn up by men who were forced by the sternest circumstances to think out what they really had to face instead of chopping logic in a university classroom.”
—George Bernard Shaw (18561950)