Inertial Frame of Reference - Newton's Inertial Frame of Reference

Newton's Inertial Frame of Reference

Within the realm of Newtonian mechanics, an inertial frame of reference, or inertial reference frame, is one in which Newton's first law of motion is valid. However, the principle of special relativity generalizes the notion of inertial frame to include all physical laws, not simply Newton's first law.

Newton viewed the first law as valid in any reference frame that is in uniform motion relative to the fixed stars; that is, neither rotating nor accelerating relative to the stars. Today the notion of "absolute space" is abandoned, and an inertial frame in the field of classical mechanics is defined as:

An inertial frame of reference is one in which the motion of a particle not subject to forces is in a straight line at constant speed.

Hence, with respect to an inertial frame, an object or body accelerates only when a physical force is applied, and (following Newton's first law of motion), in the absence of a net force, a body at rest will remain at rest and a body in motion will continue to move uniformly—that is, in a straight line and at constant speed. Newtonian inertial frames transform among each other according to the Galilean group of symmetries.

If this rule is interpreted as saying that straight-line motion is an indication of zero net force, the rule does not identify inertial reference frames, because straight-line motion can be observed in a variety of frames. If the rule is interpreted as defining an inertial frame, then we have to be able to determine when zero net force is applied. The problem was summarized by Einstein:

The weakness of the principle of inertia lies in this, that it involves an argument in a circle: a mass moves without acceleration if it is sufficiently far from other bodies; we know that it is sufficiently far from other bodies only by the fact that it moves without acceleration. —Albert Einstein: The Meaning of Relativity, p. 58

There are several approaches to this issue. One approach is to argue that all real forces drop off with distance from their sources in a known manner, so we have only to be sure that we are far enough away from all sources to ensure that no force is present. A possible issue with this approach is the historically long-lived view that the distant universe might affect matters (Mach's principle). Another approach is to identify all real sources for real forces and account for them. A possible issue with this approach is that we might miss something, or account inappropriately for their influence (Mach's principle again?). A third approach is to look at the way the forces transform when we shift reference frames. Fictitious forces, those that arise due to the acceleration of a frame, disappear in inertial frames, and have complicated rules of transformation in general cases. On the basis of universality of physical law and the request for frames where the laws are most simply expressed, inertial frames are distinguished by the absence of such fictitious forces.

Newton enunciated a principle of relativity himself in one of his corollaries to the laws of motion:

The motions of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line. —Isaac Newton: Principia, Corollary V, p. 88 in Andrew Motte translation

This principle differs from the special principle in two ways: first, it is restricted to mechanics, and second, it makes no mention of simplicity. It shares with the special principle the invariance of the form of the description among mutually translating reference frames. The role of fictitious forces in classifying reference frames is pursued further below.

Read more about this topic:  Inertial Frame Of Reference

Famous quotes containing the words frame of reference, newton, frame and/or reference:

    A set of ideas, a point of view, a frame of reference is in space only an intersection, the state of affairs at some given moment in the consciousness of one man or many men, but in time it has evolving form, virtually organic extension. In time ideas can be thought of as sprouting, growing, maturing, bringing forth seed and dying like plants.
    John Dos Passos (1896–1970)

    I frame no hypotheses; for whatever is not deduced from the phenomena is to be called a hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy.
    —Isaac Newton (1642–1727)

    Painting seems to be to the eye what dancing is to the limbs. When that has educated the frame to self-possession, to nimbleness, to grace, the steps of the dancing-master are better forgotten; so painting teaches me the splendor of color and the expression of form, and as I see many pictures and higher genius in the art, I see the boundless opulence of the pencil, the indifferency in which the artist stands free to choose out of the possible forms.
    Ralph Waldo Emerson (1803–1882)

    I think, for the rest of my life, I shall refrain from looking up things. It is the most ravenous time-snatcher I know. You pull one book from the shelf, which carries a hint or a reference that sends you posthaste to another book, and that to successive others. It is incredible, the number of books you hopefully open and disappointedly close, only to take down another with the same result.
    Carolyn Wells (1862–1942)