Inertial Frame of Reference - Newtonian Mechanics

Newtonian Mechanics

Main article: Newton's laws of motion

Classical mechanics, which includes relativity, assumes the equivalence of all inertial reference frames. Newtonian mechanics makes the additional assumptions of absolute space and absolute time. Given these two assumptions, the coordinates of the same event (a point in space and time) described in two inertial reference frames are related by a Galilean transformation.


\mathbf{r}^{\prime} = \mathbf{r} - \mathbf{r}_{0} - \mathbf{v} t

t^{\prime} = t - t_{0}

where r0 and t0 represent shifts in the origin of space and time, and v is the relative velocity of the two inertial reference frames. Under Galilean transformations, the time t2t1 between two events is the same for all inertial reference frames and the distance between two simultaneous events (or, equivalently, the length of any object, |r2r1|) is also the same.

Read more about this topic:  Inertial Frame Of Reference

Famous quotes containing the word mechanics:

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)