General Relativity
Main articles: General relativity and Introduction to general relativity See also: Equivalence principle and Eötvös experimentGeneral relativity is based upon the principle of equivalence:
There is no experiment observers can perform to distinguish whether an acceleration arises because of a gravitational force or because their reference frame is accelerating. —Douglas C. Giancoli, Physics for Scientists and Engineers with Modern Physics, p. 155.This idea was introduced in Einstein's 1907 article "Principle of Relativity and Gravitation" and later developed in 1911. Support for this principle is found in the Eötvös experiment, which determines whether the ratio of inertial to gravitational mass is the same for all bodies, regardless of size or composition. To date no difference has been found to a few parts in 1011. For some discussion of the subtleties of the Eötvös experiment, such as the local mass distribution around the experimental site (including a quip about the mass of Eötvös himself), see Franklin.
Einstein’s general theory modifies the distinction between nominally "inertial" and "noninertial" effects by replacing special relativity's "flat" Euclidean geometry with a curved metric. In general relativity, the principle of inertia is replaced with the principle of geodesic motion, whereby objects move in a way dictated by the curvature of spacetime. As a consequence of this curvature, it is not a given in general relativity that inertial objects moving at a particular rate with respect to each other will continue to do so. This phenomenon of geodesic deviation means that inertial frames of reference do not exist globally as they do in Newtonian mechanics and special relativity.
However, the general theory reduces to the special theory over sufficiently small regions of spacetime, where curvature effects become less important and the earlier inertial frame arguments can come back into play. Consequently, modern special relativity is now sometimes described as only a "local theory". (However, this refers to the theory’s application rather than to its derivation.)
Read more about this topic: Inertial Frame Of Reference
Famous quotes containing the words general and/or relativity:
“To judge from a single conversation, he made the impression of a narrow and very English mind; of one who paid for his rare elevation by general tameness and conformity. Off his own beat, his opinions were of no value.”
—Ralph Waldo Emerson (18031882)
“By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bête noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”
—Albert Einstein (18791955)