Inequality of Arithmetic and Geometric Means

In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.

Read more about Inequality Of Arithmetic And Geometric Means:  Background, The Inequality, Geometric Interpretation, Example Application, Proofs of The AM–GM Inequality

Famous quotes containing the words inequality, arithmetic, geometric and/or means:

    Nature is unfair? So much the better, inequality is the only bearable thing, the monotony of equality can only lead us to boredom.
    Francis Picabia (1878–1953)

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)

    New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.
    Roland Barthes (1915–1980)

    Your child should feel entitled to cry when you leave; crying is a natural thing for a child to do when she feels bad. The fact that your child cries when you go doesn’t mean she will never like day care. It just means she wants you to stay.
    Amy Laura Dombro (20th century)