Ordered Fields
If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:
- a ≤ b implies a + c ≤ b + c;
- 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.
Note that both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because −1 is the square of i and would therefore be positive.
The non-strict inequalities ≤ and ≥ on real numbers are total orders. The strict inequalities < and > on real numbers are strict total orders.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words ordered and/or fields:
“Your mind was wrought in cosmic solitude,
Through which careered an undulous pageantry
Of fiends and suns, darkness and boiling sea,
All held in ordered sway by beautys mood.”
—Allen Tate (18991979)
“When we walk, we naturally go to the fields and woods: what would become of us, if we walked only in a garden or a mall?”
—Henry David Thoreau (18171862)