Ordered Fields
If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:
- a ≤ b implies a + c ≤ b + c;
- 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.
Note that both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because −1 is the square of i and would therefore be positive.
The non-strict inequalities ≤ and ≥ on real numbers are total orders. The strict inequalities < and > on real numbers are strict total orders.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words ordered and/or fields:
“Twenty-four-hour room service generally refers to the length of time that it takes for the club sandwich to arrive. This is indeed disheartening, particularly when youve ordered scrambled eggs.”
—Fran Lebowitz (b. 1950)
“Smart lad, to slip betimes away
From fields where glory does not stay,
And early though the laurel grows
It withers quicker than the rose.”
—A.E. (Alfred Edward)