Ordered Fields
If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:
- a ≤ b implies a + c ≤ b + c;
- 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.
Note that both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because −1 is the square of i and would therefore be positive.
The non-strict inequalities ≤ and ≥ on real numbers are total orders. The strict inequalities < and > on real numbers are strict total orders.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words ordered and/or fields:
“Your mind was wrought in cosmic solitude,
Through which careered an undulous pageantry
Of fiends and suns, darkness and boiling sea,
All held in ordered sway by beautys mood.”
—Allen Tate (18991979)
“I respect not his labors, his farm where everything has its price, who would carry the landscape, who would carry his God, to market, if he could get anything for him; who goes to market for his god as it is; on whose farm nothing grows free, whose fields bear no crops, whose meadows no flowers, whose trees no fruit, but dollars; who loves not the beauty of his fruits, whose fruits are not ripe for him till they are turned to dollars. Give me the poverty that enjoys true wealth.”
—Henry David Thoreau (18171862)