Complex Numbers and Inequalities
The set of complex numbers with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that becomes an ordered field. To make an ordered field, it would have to satisfy the following two properties:
- if a ≤ b then a + c ≤ b + c
- if 0 ≤ a and 0 ≤ b then 0 ≤ a b
Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ ). In either case 0 ≤ a2; this means that and ; so and, which means ; contradiction.
However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if a ≤ b then a + c ≤ b + c"). Sometimes the lexicographical order definition is used:
- a ≤ b if < or ( and ≤ )
It can easily be proven that for this definition a ≤ b implies a + c ≤ b + c.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words complex, numbers and/or inequalities:
“We must open our eyes and see that modern civilization has become so complex and the lives of civilized men so interwoven with the lives of other men in other countries as to make it impossible to be in this world and out of it.”
—Franklin D. Roosevelt (18821945)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)
“In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hogs back with the bristles up.”
—Henry David Thoreau (18171862)