Complex Numbers and Inequalities
The set of complex numbers with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that becomes an ordered field. To make an ordered field, it would have to satisfy the following two properties:
- if a ≤ b then a + c ≤ b + c
- if 0 ≤ a and 0 ≤ b then 0 ≤ a b
Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ ). In either case 0 ≤ a2; this means that and ; so and, which means ; contradiction.
However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if a ≤ b then a + c ≤ b + c"). Sometimes the lexicographical order definition is used:
- a ≤ b if < or ( and ≤ )
It can easily be proven that for this definition a ≤ b implies a + c ≤ b + c.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words complex, numbers and/or inequalities:
“In ordinary speech the words perception and sensation tend to be used interchangeably, but the psychologist distinguishes. Sensations are the items of consciousnessa color, a weight, a texturethat we tend to think of as simple and single. Perceptions are complex affairs that embrace sensation together with other, associated or revived contents of the mind, including emotions.”
—Jacques Barzun (b. 1907)
“Think of the earth as a living organism that is being attacked by billions of bacteria whose numbers double every forty years. Either the host dies, or the virus dies, or both die.”
—Gore Vidal (b. 1925)
“In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hogs back with the bristles up.”
—Henry David Thoreau (18171862)