Operation
In both induction and synchronous motors, the stator is powered with alternating current (polyphase current in large machines) and designed to create a rotating magnetic field which rotates in time with the AC oscillations. In a synchronous motor, the rotor turns at the same rate as the stator field. By contrast, in an induction motor the rotor rotates at a slower speed than the stator field. Therefore the magnetic field through the rotor is changing (rotating). The rotor has windings in the form of closed loops. The rotating magnetic flux induces currents in the windings of the rotor; similar to a transformer. These currents in turn create magnetic fields in the rotor, that react against the stator field. Due to Lenz's law, the direction of the magnetic field created will be such as to oppose the change in current through the windings. The cause of induced current in the rotor is the rotating stator magnetic field, so to oppose this the rotor will start to rotate in the direction of the rotating stator magnetic field. The rotor accelerates until the magnitude of induced rotor current and torque balances the applied load. Since rotation at synchronous speed would result in no induced rotor current, an induction motor always operates slower than synchronous speed. The difference between actual and synchronous speed is called "slip" and in practical motors varies from 1 to 5% at full load torque.
For these currents to be induced, the speed of the physical rotor must be lower than that of the stator's rotating magnetic field, or the magnetic field would not be moving relative to the rotor conductors and no currents would be induced. As the speed of the rotor drops below synchronous speed, the rotation rate of the magnetic field in the rotor increases, inducing more current in the windings and creating more torque. The ratio between the rotation rate of the magnetic field as seen by the rotor (slip speed) and the rotation rate of the stator's rotating field is called "slip". Under load, the speed drops and the slip increases enough to create sufficient torque to turn the load. For this reason, induction motors are sometimes referred to as asynchronous motors. An induction motor can be used as an induction generator, or it can be unrolled to form the linear induction motor which can directly generate linear motion.
Read more about this topic: Induction Motor
Famous quotes containing the word operation:
“It is critical vision alone which can mitigate the unimpeded operation of the automatic.”
—Marshall McLuhan (19111980)
“You may read any quantity of books, and you may almost as ignorant as you were at starting, if you dont have, at the back of your minds, the change for words in definite images which can only be acquired through the operation of your observing faculties on the phenomena of nature.”
—Thomas Henry Huxley (182595)
“It requires a surgical operation to get a joke well into a Scotch understanding. The only idea of wit, or rather that inferior variety of the electric talent which prevails occasionally in the North, and which, under the name of Wut, is so infinitely distressing to people of good taste, is laughing immoderately at stated intervals.”
—Sydney Smith (17711845)