Indicator Function - Characteristic Function in Fuzzy Set Theory

Characteristic Function in Fuzzy Set Theory

In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions are generalized to take value in the real unit interval, or more generally, in some algebra or structure (usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called membership functions, and the corresponding "sets" are called fuzzy sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world predicates like "tall", "warm", etc.

Read more about this topic:  Indicator Function

Famous quotes containing the words function, fuzzy, set and/or theory:

    Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.
    Audre Lorde (1934–1992)

    What do you think of us in fuzzy endeavor, you whose directions are sterling, whose lunge is straight?
    Can you make a reason, how can you pardon us who memorize the rules and never score?
    Gwendolyn Brooks (b. 1917)

    What shall we say who have knowledge
    Carried to the heart? Shall we take the act
    To the grave? Shall we, more hopeful, set up the grave
    In the house? The ravenous grave?
    Allen Tate (1899–1979)

    In the theory of gender I began from zero. There is no masculine power or privilege I did not covet. But slowly, step by step, decade by decade, I was forced to acknowledge that even a woman of abnormal will cannot escape her hormonal identity.
    Camille Paglia (b. 1947)