Characteristic Function in Fuzzy Set Theory
In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions are generalized to take value in the real unit interval, or more generally, in some algebra or structure (usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called membership functions, and the corresponding "sets" are called fuzzy sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world predicates like "tall", "warm", etc.
Read more about this topic: Indicator Function
Famous quotes containing the words function, fuzzy, set and/or theory:
“The art of living is to function in society without doing violence to ones own needs or to the needs of others. The art of mothering is to teach the art of living to children.”
—Elaine Heffner (20th century)
“Even their song is not a sure thing.
It is not a language;
it is a kind of breathing.
They are two asthmatics
whose breath sobs in and out
through a small fuzzy pipe.”
—Anne Sexton (19281974)
“You have a row of dominoes set up; you knock over the first one, and what will happen to the last one is that it will go over very quickly.”
—Dwight D. Eisenhower (18901969)
“There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.”
—A.J. (Alfred Jules)