Indicator Function - Characteristic Function in Fuzzy Set Theory

Characteristic Function in Fuzzy Set Theory

In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions are generalized to take value in the real unit interval, or more generally, in some algebra or structure (usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called membership functions, and the corresponding "sets" are called fuzzy sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world predicates like "tall", "warm", etc.

Read more about this topic:  Indicator Function

Famous quotes containing the words function, fuzzy, set and/or theory:

    The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.
    Cyril Connolly (1903–1974)

    What do you think of us in fuzzy endeavor, you whose directions are sterling, whose lunge is straight?
    Can you make a reason, how can you pardon us who memorize the rules and never score?
    Gwendolyn Brooks (b. 1917)

    Please do not take counsel of women who are so prejudiced that, as I once heard said, they would not allow a male grasshopper to chirp on their lawn; but out of your own great heart, refuse to set an example to such folly.
    Frances E. Willard (1839–1898)

    The theory seems to be that so long as a man is a failure he is one of God’s chillun, but that as soon as he has any luck he owes it to the Devil.
    —H.L. (Henry Lewis)