Independent Set (graph Theory)

Independent Set (graph Theory)

In graph theory, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains.

A maximal independent set is an independent set such that adding any other vertex to the set forces the set to contain an edge.

A maximum independent set is a largest independent set for a given graph G and its size is denoted α(G). The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

Read more about Independent Set (graph Theory):  Properties, Finding Independent Sets, Software For Searching Maximum Independent Set, Software For Searching Maximal Independent Set

Famous quotes containing the words independent and/or set:

    The chimney is to some extent an independent structure, standing on the ground, and rising through the house to the heavens; even after the house is burned it still stands sometimes, and its importance and independence are apparent.
    Henry David Thoreau (1817–1862)

    Who set this ancient quarrel new abroach?
    William Shakespeare (1564–1616)