Relation To Solenoidal Field
An incompressible flow is described by a velocity field which is solenoidal. But a solenoidal field, besides having a zero divergence, also has the additional connotation of having non-zero curl (i.e., rotational component).
Otherwise, if an incompressible flow also has a curl of zero, so that it is also irrotational, then the velocity field is actually Laplacian.
Read more about this topic: Incompressible Flow
Famous quotes containing the words relation to, relation and/or field:
“The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?”
—Ralph Waldo Emerson (18031882)
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)
“The poet will write for his peers alone. He will remember only that he saw truth and beauty from his position, and expect the time when a vision as broad shall overlook the same field as freely.”
—Henry David Thoreau (18171862)