In-place Algorithm - in Computational Complexity

In Computational Complexity

In computational complexity theory, in-place algorithms include all algorithms with O(1) space complexity, the class DSPACE(1). This class is very limited; it equals the regular languages. In fact, it does not even include any of the examples listed above.

For this reason, we also consider algorithms in L, the class of problems requiring O(log n) additional space, to be in-place. Although this seems to contradict our earlier definition, we have to consider that in the abstract world our input can be arbitrarily large. On a real computer, a pointer requires only a small fixed amount of space, because the amount of physical memory is limited, but in general O(log n) bits are required to specify an index into a list of size n.

Does this mean quicksort is in-place after all? Not at all—technically, it requires O(log2 n) space, since each of its O(log n) stack frames contains a constant number of pointers (each of size O(log n)).

Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for each node). This in turn yields in-place algorithms for problems such as determining if a graph is bipartite or testing whether two graphs have the same number of connected components. See SL for more information.

Read more about this topic:  In-place Algorithm

Famous quotes containing the word complexity:

    It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.
    Elaine Heffner (20th century)