Impossible Event - Asymptotically Almost Surely

In asymptotic analysis, one says that a property holds asymptotically almost surely (a.a.s.) if, over a sequence of sets, the probability converges to 1. For instance, a large number is asymptotically almost surely composite, by the prime number theorem; and in random graph theory, the statement "G(n,pn) is connected" (where G(n,p) denotes the graphs on n vertices with edge probability p) is true a.a.s when pn > for any ε > 0.

In number theory this is referred to as "almost all", as in "almost all numbers are composite". Similarly, in graph theory, this is sometimes referred to as "almost surely".

Read more about this topic:  Impossible Event

Famous quotes containing the word surely:

    It is surely a matter of common observation that a man who knows no one thing intimately has no views worth hearing on things in general. The farmer philosophizes in terms of crops, soils, markets, and implements, the mechanic generalizes his experiences of wood and iron, the seaman reaches similar conclusions by his own special road; and if the scholar keeps pace with these it must be by an equally virile productivity.
    Charles Horton Cooley (1864–1929)