Solving The Inverse Pricing Model Function
In general, a pricing model function, f, does not have a closed-form solution for its inverse, g. Instead, a root finding technique is used to solve the equation:
While there are many techniques for finding roots, two of the most commonly used are Newton's method and Brent's method. Because options prices can move very quickly, it is often important to use the most efficient method when calculating implied volatilities.
Newton's method provides rapid convergence; however, it requires the first partial derivative of the option's theoretical value with respect to volatility; i.e., which is also known as vega (see The Greeks). If the pricing model function yields a closed-form solution for vega, which is the case for Black–Scholes model, then Newton's method can be more efficient. However, for most practical pricing models, such as a binomial model, this is not the case and vega must be derived numerically. When forced to solve for vega numerically, it usually turns out that Brent's method is more efficient as a root-finding technique.
Read more about this topic: Implied Volatility
Famous quotes containing the words solving the, solving, inverse, model and/or function:
“Will women find themselves in the same position they have always been? Or do we see liberation as solving the conditions of women in our society?... If we continue to shy away from this problem we will not be able to solve it after independence. But if we can say that our first priority is the emancipation of women, we will become free as members of an oppressed community.”
—Ruth Mompati (b. 1925)
“Cultural expectations shade and color the images that parents- to-be form. The baby product ads, showing a woman serenely holding her child, looking blissfully and mysteriously contented, or the television parents, wisely and humorously solving problems, influence parents-to-be.”
—Ellen Galinsky (20th century)
“Yet time and space are but inverse measures of the force of the soul. The spirit sports with time.”
—Ralph Waldo Emerson (18031882)
“The Battle of Waterloo is a work of art with tension and drama with its unceasing change from hope to fear and back again, change which suddenly dissolves into a moment of extreme catastrophe, a model tragedy because the fate of Europe was determined within this individual fate.”
—Stefan Zweig (18811942)
“Every boy was supposed to come into the world equipped with a father whose prime function was to be our father and show us how to be men. He can escape us, but we can never escape him. Present or absent, dead or alive, real or imagined, our father is the main man in our masculinity.”
—Frank Pittman (20th century)