Statement of The Theorem
Let f : Rn+m → Rm be a continuously differentiable function. We think of Rn+m as the Cartesian product Rn × Rm, and we write a point of this product as (x,y) = (x1, ..., xn, y1, ..., ym). Starting from the given function f, our goal is to construct a function g : Rn → Rm whose graph (x, g(x)) is precisely the set of all (x, y) such that f(x, y) = 0.
As noted above, this may not always be possible. We will therefore fix a point (a,b) = (a1, ..., an, b1, ..., bm) which satisfies f(a, b) = 0, and we will ask for a g that works near the point (a, b). In other words, we want an open set U of Rn, an open set V of Rm, and a function g : U → V such that the graph of g satisfies the relation f = 0 on U × V. In symbols,
To state the implicit function theorem, we need the Jacobian matrix of, which is the matrix of the partial derivatives of . Abbreviating (a1, ..., an, b1, ..., bm) to (a, b), the Jacobian matrix is
where is the matrix of partial derivatives in the 's and is the matrix of partial derivatives in the 's. The implicit function theorem says that if is an invertible matrix, then there are, and as desired. Writing all the hypotheses together gives the following statement.
- Let f : Rn+m → Rm be a continuously differentiable function, and let Rn+m have coordinates (x, y). Fix a point (a1,...,an,b1,...,bm) = (a,b) with f(a,b)=c, where c∈ Rm. If the matrix is invertible, then there exists an open set U containing a, an open set V containing b, and a unique continuously differentiable function g:U → V such that
Read more about this topic: Implicit Function Theorem
Famous quotes containing the words statement of the, statement of, statement and/or theorem:
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)
“The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.”
—Polly Berrien Berends (20th century)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)