Application: Change of Coordinates
Suppose we have an m-dimensional space, parametrised by a set of coordinates . We can introduce a new coordinate system by supplying m functions . These functions allow to calculate the new coordinates of a point, given the point's old coordinates using . One might want to verify if the opposite is possible: given coordinates, can we 'go back' and calculate the same point's original coordinates ? The implicit function theorem will provide an answer to this question. The (new and old) coordinates are related by, with
Now the Jacobian matrix of f at a certain point is given by
where denotes the identity matrix, and J is the matrix of partial derivatives, evaluated at . (In the above, these blocks were denoted by X and Y. As it happens, in this particular application of the theorem, neither matrix depends on .) The implicit function theorem now states that we can locally express as a function of if J is invertible. Demanding J is invertible is equivalent to, thus we see that we can go back from the primed to the unprimed coordinates if the determinant of the Jacobian J is non-zero. This statement is also known as the inverse function theorem.
Read more about this topic: Implicit Function Theorem
Famous quotes containing the word change:
“Jealousy is bred in doubts. When those doubts change into certainties, then the passion either ceases or turns absolute madness.”
—François, Duc De La Rochefoucauld (16131680)