Partial Differential Equation-based Methods
Using a partial differential equation (PDE)-based method and solving the PDE equation by a numerical scheme, one can segment the image. Curve propagation is a popular technique in this category, with numerous applications to object extraction, object tracking, stereo reconstruction, etc. The central idea is to evolve an initial curve towards the lowest potential of a cost function, where its definition reflects the task to be addressed. As for most inverse problems, the minimization of the cost functional is non-trivial and imposes certain smoothness constraints on the solution, which in the present case can be expressed as geometrical constraints on the evolving curve.
Read more about this topic: Image Segmentation
Famous quotes containing the words partial, differential and/or methods:
“There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every mans title to fame. Only those books come down which deserve to last.”
—Ralph Waldo Emerson (18031882)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“The comparison between Coleridge and Johnson is obvious in so far as each held sway chiefly by the power of his tongue. The difference between their methods is so marked that it is tempting, but also unnecessary, to judge one to be inferior to the other. Johnson was robust, combative, and concrete; Coleridge was the opposite. The contrast was perhaps in his mind when he said of Johnson: his bow-wow manner must have had a good deal to do with the effect produced.”
—Virginia Woolf (18821941)