Image (mathematics) - Examples

Examples

1. f: {1,2,3} → {a,b,c,d} defined by

The image of the set {2,3} under f is f({2,3}) = {a,c}. The image of the function f is {a,c}. The preimage of a is f −1({a}) = {1,2}. The preimage of {a,b} is also {1,2}. The preimage of {b,d} is the empty set {}.

2. f: RR defined by f(x) = x2.

The image of {-2,3} under f is f({-2,3}) = {4,9}, and the image of f is R+. The preimage of {4,9} under f is f −1({4,9}) = {-3,-2,2,3}. The preimage of set N = {nR | n < 0} under f is the empty set, because the negative numbers do not have square roots in the set of reals.

3. f: R2 → R defined by f(x, y) = x2 + y2.

The fibres f −1({a}) are concentric circles about the origin, the origin itself, and the empty set, depending on whether a>0, a=0, or a<0, respectively.

4. If M is a manifold and π :TMM is the canonical projection from the tangent bundle TM to M, then the fibres of π are the tangent spaces Tx(M) for xM. This is also an example of a fiber bundle.

Read more about this topic:  Image (mathematics)

Famous quotes containing the word examples:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)