Image (mathematics) - Consequences

Consequences

Given a function f : XY, for all subsets A, A1, and A2 of X and all subsets B, B1, and B2 of Y we have:

  • f(A1A2) = f(A1) ∪ f(A2)
  • f(A1A2) ⊆ f(A1) ∩ f(A2)
  • f −1(B1B2) = f −1(B1) ∪ f −1(B2)
  • f −1(B1B2) = f −1(B1) ∩ f −1(B2)
  • f(A) ⊆ BAf −1(B)
  • f(f −1(B)) ⊆ B
  • f −1(f(A)) ⊇ A
  • A1A2f(A1) ⊆ f(A2)
  • B1B2f −1(B1) ⊆ f −1(B2)
  • f −1(BC) = (f −1(B))C
  • (f |A)−1(B) = Af −1(B).

The results relating images and preimages to the (Boolean) algebra of intersection and union work for any collection of subsets, not just for pairs of subsets:

(Here, S can be infinite, even uncountably infinite.)

With respect to the algebra of subsets, by the above we see that the inverse image function is a lattice homomorphism while the image function is only a semilattice homomorphism (it does not always preserve intersections).

Read more about this topic:  Image (mathematics)

Famous quotes containing the word consequences:

    [As teenager], the trauma of near-misses and almost- consequences usually brings us to our senses. We finally come down someplace between our parents’ safety advice, which underestimates our ability, and our own unreasonable disregard for safety, which is our childlike wish for invulnerability. Our definition of acceptable risk becomes a product of our own experience.
    Roger Gould (20th century)

    The middle years are ones in which children increasingly face conflicts on their own,... One of the truths to be faced by parents during this period is that they cannot do the work of living and relating for their children. They can be sounding boards and they can probe with the children the consequences of alternative actions.
    Dorothy H. Cohen (20th century)

    If you are prepared to accept the consequences of your dreams ... then you must still regard America today with the same naive enthusiasm as the generations that discovered the New World.
    Jean Baudrillard (b. 1929)