Illustration of The Continuous Case
The density of the sum of two independent real-valued random variables equals the convolution of the density functions of the original variables.
Thus, the density of the sum of m+n terms of a sequence of independent identically distributed variables equals the convolution of the densities of the sums of m terms and of n term. In particular, the density of the sum of n+1 terms equals the convolution of the density of the sum of n terms with the original density (the "sum" of 1 term).
A probability density function is shown in the first figure below. Then the densities of the sums of two, three, and four independent identically distributed variables, each having the original density, are shown in the following figures. If the original density is a piecewise polynomial, as it is in the example, then so are the sum densities, of increasingly higher degree. Although the original density is far from normal, the density of the sum of just a few variables with that density is much smoother and has some of the qualitative features of the normal density.
The convolutions were computed via the discrete Fourier transform. A list of values y = f(x0 + k Δx) was constructed, where f is the original density function, and Δx is approximately equal to 0.002, and k is equal to 0 through 1000. The discrete Fourier transform Y of y was computed. Then the convolution of f with itself is proportional to the inverse discrete Fourier transform of the pointwise product of Y with itself.
Read more about this topic: Illustration Of The Central Limit Theorem
Famous quotes containing the words illustration of, illustration, continuous and/or case:
“What is character but the determination of incident? What is incident but the illustration of character?”
—Henry James (18431916)
“What is character but the determination of incident? What is incident but the illustration of character?”
—Henry James (18431916)
“The gap between ideals and actualities, between dreams and achievements, the gap that can spur strong men to increased exertions, but can break the spirit of othersthis gap is the most conspicuous, continuous land mark in American history. It is conspicuous and continuous not because Americans achieve little, but because they dream grandly. The gap is a standing reproach to Americans; but it marks them off as a special and singularly admirable community among the worlds peoples.”
—George F. Will (b. 1941)
“Im a very smart guy. I havent a feeling or a scruple in the world. All I have the itch for is money. I am so money greedy that for twenty-five bucks a day and expenses, mostly gasoline and whisky, I do my thinking myself, what there is of it; I risk my whole future, the hatred of the cops ... I dodge bullets and eat saps, and say thank you very much, if you have any more trouble, I hope youll think of me, Ill just leave one of my cards in case anything comes up.”
—Raymond Chandler (18881959)