Ihara Zeta Function
In mathematics, the Ihara zeta-function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta-function, and is used to relate closed paths to the spectrum of the adjacency matrix. The Ihara zeta-function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book Trees that Ihara's original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice (1985). A regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis.
Read more about Ihara Zeta Function: Definition, Ihara's Formula, Applications
Famous quotes containing the word function:
“The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.”
—Ralph Waldo Emerson (18031882)