Igneous Rock - Mineralogical Classification

Mineralogical Classification

For volcanic rocks, mineralogy is important in classifying and naming lavas. The most important criterion is the phenocryst species, followed by the groundmass mineralogy. Often, where the groundmass is aphanitic, chemical classification must be used to properly identify a volcanic rock.

Mineralogic contents - felsic versus mafic

  • felsic rock, highest content of silicon, with predominance of quartz, alkali feldspar and/or feldspathoids: the felsic minerals; these rocks (e.g., granite, rhyolite) are usually light coloured, and have low density.
  • mafic rock, lesser content of silicon relative to felsic rocks, with predominance of mafic minerals pyroxenes, olivines and calcic plagioclase; these rocks (example, basalt, gabbro) are usually dark coloured, and have a higher density than felsic rocks.
  • ultramafic rock, lowest content of silicon, with more than 90% of mafic minerals (e.g., dunite).

For intrusive, plutonic and usually phaneritic igneous rocks where all minerals are visible at least via microscope, the mineralogy is used to classify the rock. This usually occurs on ternary diagrams, where the relative proportions of three minerals are used to classify the rock.

The following table is a simple subdivision of igneous rocks according both to their composition and mode of occurrence.

Composition
Mode of occurrence Felsic Intermediate Mafic Ultramafic
Intrusive Granite Diorite Gabbro Peridotite
Extrusive Rhyolite Andesite Basalt Komatiite
Essential rock forming silicates
Felsic Intermediate Mafic Ultramafic
Coarse Grained Granite Diorite Gabbro Peridotite
Medium Grained Diabase
Fine Grained Rhyolite Andesite Basalt Komatiite

For a more detailed classification see QAPF diagram.

Read more about this topic:  Igneous Rock