Identity Function - Definition

Definition

Formally, if M is a set, the identity function f on M is defined to be that function with domain and codomain M which satisfies

f(x) = x for all elements x in M.

In other words, the function assigns to each element x of M the element x of M.

The identity function f on M is often denoted by idM.

In terms of set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or diagonal of M.

Read more about this topic:  Identity Function

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)