Definition
Formally, if M is a set, the identity function f on M is defined to be that function with domain and codomain M which satisfies
- f(x) = x for all elements x in M.
In other words, the function assigns to each element x of M the element x of M.
The identity function f on M is often denoted by idM.
In terms of set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or diagonal of M.
Read more about this topic: Identity Function
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)