Ideal Norm - Relative Norm

Relative Norm

Let A be a Dedekind domain with the field of fractions K and B be the integral closure of A in a finite separable extension L of K. (In particular, B is Dedekind then.) Let and be the ideal groups of A and B, respectively (i.e., the sets of fractional ideals.) Following (Serre 1979), the norm map

is a homomorphism given by

If are local fields, is defined to be a fractional ideal generated by the set This definition is equivalent to the above and is given in (Iwasawa 1986).

For, one has where . The definition is thus also compatible with norm of an element:

Let be a finite Galois extension of number fields with rings of integer . Then the preceding applies with and one has

which is an ideal of . The norm of a principal ideal generated by α is the ideal generated by the field norm of α.

The norm map is defined from the set of ideals of to the set of ideals of . It is reasonable to use integers as the range for since Z has trivial ideal class group. This idea does not work in general since the class group may not be trivial.

Read more about this topic:  Ideal Norm

Famous quotes containing the words relative and/or norm:

    Personal change, growth, development, identity formation—these tasks that once were thought to belong to childhood and adolescence alone now are recognized as part of adult life as well. Gone is the belief that adulthood is, or ought to be, a time of internal peace and comfort, that growing pains belong only to the young; gone the belief that these are marker events—a job, a mate, a child—through which we will pass into a life of relative ease.
    Lillian Breslow Rubin (20th century)

    To be told that our child’s behavior is “normal” offers little solace when our feelings are badly hurt, or when we worry that his actions are harmful at the moment or may be injurious to his future. It does not help me as a parent nor lessen my worries when my child drives carelessly, even dangerously, if I am told that this is “normal” behavior for children of his age. I’d much prefer him to deviate from the norm and be a cautious driver!
    Bruno Bettelheim (20th century)