Absolute Norm
Let be a number field with ring of integers, and a nonzero ideal of . Then the norm of is defined to be
By convention, the norm of the zero ideal is taken to be zero.
If is a principal ideal with, then . For proof, cf. Marcus, theorem 22c, pp65ff.
The norm is also completely multiplicative in that if and are ideals of, then . For proof, cf. Marcus, theorem 22a, pp65ff.
The norm of an ideal can be used to bound the norm of some nonzero element by the inequality
where is the discriminant of and is the number of pairs of complex embeddings of into .
Read more about this topic: Ideal Norm
Famous quotes containing the words absolute and/or norm:
“War is bestowed like electroshock on the depressive nation; thousands of volts jolting the system, an artificial galvanizing, one effect of which is loss of memory. War comes at the end of the twentieth century as absolute failure of imagination, scientific and political. That a war can be represented as helping a people to feel good about themselves, their country, is a measure of that failure.”
—Adrienne Rich (b. 1929)
“A society that presumes a norm of violence and celebrates aggression, whether in the subway, on the football field, or in the conduct of its business, cannot help making celebrities of the people who would destroy it.”
—Lewis H. Lapham (b. 1935)