Ice Resurfacer - Technology

Technology

Ice resurfacers are generally composed of a snow container, hot water tanks, a wash water tank, the conditioner, and a board brush. The engine or motor of the vehicle is responsible both for propelling the resurfacer and also powering the hydraulics that control the various functions, such as lowering the conditioner or raising the snow dump.

Most of the actual resurfacing components are contained in a heavy device at the rear of the machine, known as the "conditioner". The conditioner is hydraulically lowered to the ice surface, its weight providing the friction necessary for a large, sharp blade (similar to those used in industrial paper cutters) to shave off the top layer of ice. A horizontal auger collects these ice shavings, or snow, and funnels them to a vertical auger at the center of the conditioner. The shavings are then carried upward and sprayed into a large snow container, which takes up most of the volume of the resurfacer. In early models, a paddle-and-chain conveyor was used instead of a second, vertical auger. The height of the blade can be adjusted by the driver, allowing deeper or shallower cuts. This is useful for keeping the ice sheet level, improving the quality of the cut, and preventing the snow container from over flowing.

Wash water can be used to further improve the quality of the ice by removing debris and snow from deep skate-blade cuts. Located directly in front of the blade, nozzles forcefully spray water into the ice surface, loosening deep debris. Runners on either side of the conditioner contain the spray, while a rubber squeegee at the rear of the conditioner allows a vacuum nozzle to pick up excess water. This water is then filtered through a screen and recirculated.

Finally, a layer of hot water (140°F to 160°F, 60°C) is laid down to fill in the remaining grooves in the ice. The hot water is released through a sprinkler pipe at the rear of the conditioner, which wets the cloth towel that is dragged behind the resurfacer. The towel ensures a smooth, controlled deposition of water. Hot water is used because it slightly melts the layer of ice below it, forming a stronger bond when frozen. This limits chipping and cracking, providing a more enjoyable skating surface. The water used in many rinks is also filtered and treated before being heated to remove any minerals or chemicals in the water. These impurities can otherwise make the ice brittle, soft, give it undesirable odors, or change the color and clarity.

Many ice resurfacers are fitted with a "board brush", a rotary brush powered by a hydraulic motor. The board brush is extended and retracted on the left side of the machine by a hydraulic arm. This allows the operator to collect ice shavings and debris that accumulate along the edge of the rink (along the kick plates below the dasher boards of the rink) where the conditioner cannot easily reach. The brush sweeps the accumulations into the path of the conditioner, which removes them from the ice. The use of a board brush can dramatically reduce the need for edging of the rink.

After resurfacing the entire sheet, also known as an "ice cut" or "flood", the snow container must be emptied. Hydraulics raise one end of the container, causing the snow to spill out.

Most ice resurfacers run on natural gas, propane/LPG/autogas or electric power, or less commonly on gasoline.

Smaller, cheaper machines have also been designed to provide a smooth ice surface in a manner similar to a traditional resurfacer. These can be either self-propelled or pushed/pulled by the operator. Self-propelled vehicles typically incorporate the main components of full-size ice resurfacer, including a blade and water tank, but on a smaller scale. These are usually mounted to an ATV or golf cart-like vehicle.

Read more about this topic:  Ice Resurfacer

Famous quotes containing the word technology:

    Primitive peoples tried to annul death by portraying the human body—we do it by finding substitutes for the human body. Technology instead of mysticism!
    Max Frisch (1911–1991)

    The real accomplishment of modern science and technology consists in taking ordinary men, informing them narrowly and deeply and then, through appropriate organization, arranging to have their knowledge combined with that of other specialized but equally ordinary men. This dispenses with the need for genius. The resulting performance, though less inspiring, is far more predictable.
    John Kenneth Galbraith (b. 1908)

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)