The Hypergeometric Series
The hypergeometric function is defined for |z| < 1 by the power series
provided that c does not equal 0, −1, −2, ... . Here (q)n is the Pochhammer symbol, which is defined by:
Notice that the series terminates if either a or b is a nonpositive integer. For complex arguments z with |z| ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 0 and 1.
Read more about this topic: Hypergeometric Function
Famous quotes containing the word series:
“Autobiography is only to be trusted when it reveals something disgraceful. A man who gives a good account of himself is probably lying, since any life when viewed from the inside is simply a series of defeats.”
—George Orwell (19031950)
Related Subjects
Related Phrases
Related Words