Hypergeometric Function - Special Cases

Special Cases

Many of the common mathematical functions can be expressed in terms of the hypergeometric function, or as limiting cases of it. Some typical examples are

.

(1-z)^{-a} = \,_2F_1(a,1;1;z)

\arcsin z = z \,_2F_1\left(\tfrac{1}{2}, \tfrac{1}{2}; \tfrac{3}{2};z^2\right)

The confluent hypergeometric function (or Kummer's function) can be given as a limit of the hypergeometric function

so all functions that are essentially special cases of it, such as Bessel functions, can be expressed as limits of hypergeometric functions. These include most of the commonly used functions of mathematical physics.

Legendre functions are solutions of a second order differential equation with 3 regular singular points so can be expressed in terms of the hypergeometric function in many ways, for example

Several orthogonal polynomials, including Jacobi polynomials P(α,β)
n and their special cases Legendre polynomials, Chebyshev polynomials, Gegenbauer polynomials can be written in terms of hypergeometric functions using

Other polynomials that are special cases include Krawtchouk polynomials, Meixner polynomials, Meixner–Pollaczek polynomials.

Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0. For examples, if

then

is an elliptic modular function of τ.

Incomplete beta functions Bx(p,q) are related by

The complete elliptic integrals K and E are given by

Read more about this topic:  Hypergeometric Function

Famous quotes containing the words special and/or cases:

    The treatment of the incident of the assault upon the sailors of the Baltimore is so conciliatory and friendly that I am of the opinion that there is a good prospect that the differences growing out of that serious affair can now be adjusted upon terms satisfactory to this Government by the usual methods and without special powers from Congress.
    Benjamin Harrison (1833–1901)

    The world men inhabit ... is rather bleak. It is a world full of doubt and confusion, where vulnerability must be hidden, not shared; where competition, not co-operation, is the order of the day; where men sacrifice the possibility of knowing their own children and sharing in their upbringing, for the sake of a job they may have chosen by chance, which may not suit them and which in many cases dominates their lives to the exclusion of much else.
    Anna Ford (b. 1943)