Hyperfocal Distance - Mathematical Phenomenon

Mathematical Phenomenon

The hyperfocal distance is a curious property: While a lens focused at H will hold a depth of field from H/2 to infinity, if the lens is focused to H/2, the depth of field will extend from H/3 to H; if the lens is then focused to H/3, the depth of field will extend from H/4 to H/2. This continues on through all successive 1/x values of the hyperfocal distance.

Piper (1901) calls this phenomenon "consecutive depths of field" and shows how to test the idea easily. This is also among the earliest of publications to use the word hyperfocal.

The figure on the right illustrates this phenomenon.

Read more about this topic:  Hyperfocal Distance

Famous quotes containing the words mathematical and/or phenomenon:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    The expectation that every neurotic phenomenon can be cured may, I suspect, be derived from the layman’s belief that the neuroses are something quite unnecessary which have no right whatever to exist. Whereas in fact they are severe, constitutionally fixed illnesses, which rarely restrict themselves to only a few attacks but persist as a rule over long periods throughout life.
    Sigmund Freud (1856–1939)