Hyperfocal Distance - Mathematical Phenomenon

Mathematical Phenomenon

The hyperfocal distance is a curious property: While a lens focused at H will hold a depth of field from H/2 to infinity, if the lens is focused to H/2, the depth of field will extend from H/3 to H; if the lens is then focused to H/3, the depth of field will extend from H/4 to H/2. This continues on through all successive 1/x values of the hyperfocal distance.

Piper (1901) calls this phenomenon "consecutive depths of field" and shows how to test the idea easily. This is also among the earliest of publications to use the word hyperfocal.

The figure on the right illustrates this phenomenon.

Read more about this topic:  Hyperfocal Distance

Famous quotes containing the words mathematical and/or phenomenon:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)