Formulation and Choice of Model
While this model is the simplest way to describe hyperelliptic curves, such an equation will have a singular point at infinity in the projective plane. This feature is specific to the case n > 4. Therefore in giving such an equation to specify a non-singular curve, it is almost always assumed that a non-singular model (also called a smooth completion), equivalent in the sense of birational geometry, is meant.
To be more precise, the equation defines a quadratic extension of C(x), and it is that function field that is meant. The singular point at infinity can be removed (since this is a curve) by the normalization (integral closure) process. It turns out that after doing this, there is a cover of the curve with two affine pieces: the one already given by
and another one given by
- .
The glueing maps between the two pieces are given by
and
wherever they are defined.
In fact geometric shorthand is assumed, with the curve C being defined as a ramified double cover of the projective line, the ramification occurring at the roots of f, and also for odd n at the point at infinity. In this way the cases n = 2g + 1 and 2g + 2 can be unified, since we might as well use an automorphism of the projective line to move any ramification point away from infinity.
Read more about this topic: Hyperelliptic Curve
Famous quotes containing the words formulation, choice and/or model:
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (1844–1889)
“Every day care center, whether it knows it or not, is a school. The choice is never between custodial care and education. The choice is between unplanned and planned education, between conscious and unconscious education, between bad education and good education.”
—James L. Hymes, Jr. (20th century)
“The best way to teach a child restraint and generosity is to be a model of those qualities yourself. If your child sees that you want a particular item but refrain from buying it, either because it isn’t practical or because you can’t afford it, he will begin to understand restraint. Likewise, if you donate books or clothing to charity, take him with you to distribute the items to teach him about generosity.”
—Lawrence Balter (20th century)