Models of Hyperbolic Space
Hyperbolic space, developed independently by Lobachevsky and Bolyai, is a geometrical space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):
- Given any line L and point P not on L, there are at least two distinct lines passing through P which do not intersect L.
It is then a theorem that there are in fact infinitely many such lines through P. Note that this axiom still does not uniquely characterize the hyperbolic plane uniquely up to isometry; there is an extra constant, the curvature K<0, which must be specified. However, it does uniquely characterize it up to homothety, meaning up to bijections which only change the notion of distance by an overall constant. By choosing an appropriate length-scale, one can thus assume, without loss of generality, that K=-1.
Hyperbolic spaces are constructed in order to model such a modification of Euclidean geometry. In particular, the existence of model spaces implies that the parallel postulate is logically independent of the other axioms of Euclidean geometry.
There are several important models of hyperbolic space: the Klein model, the hyperboloid model, and the Poincaré model. These all model the same geometry in the sense that any two of them can be related by a transformation which preserves all the geometrical properties of the space. They are isometric.
Read more about this topic: Hyperbolic Space
Famous quotes containing the words models and/or space:
“Friends broaden our horizons. They serve as new models with whom we can identify. They allow us to be ourselvesand accept us that way. They enhance our self-esteem because they think were okay, because we matter to them. And because they matter to usfor various reasons, at various levels of intensitythey enrich the quality of our emotional life.”
—Judith Viorst (20th century)
“... the movie womans world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but its all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.”
—Jeanine Basinger (b. 1936)