Hyperbolic Space - Formal Definition

Formal Definition

Hyperbolic n-space, denoted Hn, is the maximally symmetric, simply connected, n-dimensional Riemannian manifold with constant sectional curvature −1. Hyperbolic space is the principal example of a space exhibiting hyperbolic geometry. It can be thought of as the negative-curvature analogue of the n-sphere. Although hyperbolic space Hn is diffeomorphic to Rn its negative-curvature metric gives it very different geometric properties.

Hyperbolic 2-space, H², is also called the hyperbolic plane.

Read more about this topic:  Hyperbolic Space

Famous quotes containing the words formal and/or definition:

    True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....
    Marcel Proust (1871–1922)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)