Hyperbolic Geometry - Non-intersecting Lines

Non-intersecting Lines

An interesting property of hyperbolic geometry follows from the occurrence of more than one line parallel to R through a point P, not on R: there are two classes of non-intersecting lines. Let B be the point on R such that the line PB is perpendicular to R. Consider the line x through P such that x does not intersect R, and the angle θ between PB and x counterclockwise from PB is as small as possible; i.e., any smaller angle will force the line to intersect R. This is called an asymptotic line in hyperbolic geometry. Symmetrically, the line y that forms the same angle θ between PB and itself but clockwise from PB will also be asymptotic. x and y are the only two lines asymptotic to R through P. All other lines through P not intersecting R, with angles greater than θ with PB, are called ultraparallel (or disjointly parallel) to R. Notice that since there are an infinite number of possible angles between θ and 90°, and each one will determine two lines through P and disjointly parallel to R, there exist an infinite number of ultraparallel lines.

Thus we have this modified form of the parallel postulate: In hyperbolic geometry, given any line R, and point P not on R, there are exactly two lines through P which are asymptotic to R, and infinitely many lines through P ultraparallel to R.

The differences between these types of lines can also be looked at in the following way: the distance between asymptotic lines shrinks toward zero in one direction and grows without bound in the other; the distance between ultraparallel lines (eventually) increases in both directions. The ultraparallel theorem states that there is a unique line in the hyperbolic plane that is perpendicular to each of a given pair of ultraparallel lines.

In Euclidean geometry, the "angle of parallelism" is a constant; that is, any distance between parallel lines yields an angle of parallelism equal to 90°. In hyperbolic geometry, the angle of parallelism varies with the Π(p) function. This function, described by Nikolai Ivanovich Lobachevsky, produces a unique angle of parallelism for each distance p = . As the distance gets shorter, Π(p) approaches 90°, whereas with increasing distance Π(p) approaches 0°. Thus, as distances get smaller, the hyperbolic plane behaves more and more like Euclidean geometry. Indeed, on small scales compared to, where K is the (constant) Gaussian curvature of the plane, an observer would have a hard time determining whether the environment is Euclidean or hyperbolic.

Read more about this topic:  Hyperbolic Geometry

Famous quotes containing the word lines:

    We joined long wagon trains moving south; we met hundreds of wagons going north; the roads east and west were crawling lines of families traveling under canvas, looking for work, for another foothold somewhere on the land.... The country was ruined, the whole world was ruined; nothing like this had ever happened before. There was no hope, but everyone felt the courage of despair.
    Rose Wilder Lane (1886–1968)