Hyperbolic Function - Taylor Series Expressions

Taylor Series Expressions

It is possible to express the above functions as Taylor series:

The function sinh x has a Taylor series expression with only odd exponents for x. Thus it is an odd function, that is, −sinh x = sinh(−x), and sinh 0 = 0.

The function cosh x has a Taylor series expression with only even exponents for x. Thus it is an even function, that is, symmetric with respect to the y-axis. The sum of the sinh and cosh series is the infinite series expression of the exponential function.

\begin{align} \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \left |x \right | < \frac {\pi} {2} \\ \coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, 0 < \left |x \right | < \pi \\ \operatorname {sech}\, x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!}, \left |x \right | < \frac {\pi} {2} \\ \operatorname {csch}\, x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!}, 0 < \left |x \right | < \pi
\end{align}

where

is the nth Bernoulli number
is the nth Euler number

Read more about this topic:  Hyperbolic Function

Famous quotes containing the words taylor, series and/or expressions:

    Oh, what a might is this whose single frown
    Doth shake the world as it would shake it down?
    Which all from nothing fet, from nothing all;
    Hath all on nothing set, lets nothing fall.
    Gave all to nothing man indeed, whereby
    Through nothing man all might Him glorify.
    —Edward Taylor (1645–1729)

    Autobiography is only to be trusted when it reveals something disgraceful. A man who gives a good account of himself is probably lying, since any life when viewed from the inside is simply a series of defeats.
    George Orwell (1903–1950)

    We ought to celebrate this hour by expressions of manly joy. Not thanks, not prayer seem quite the highest or truest name for our communication with the infinite,—but glad and conspiring reception,—reception that becomes giving in its turn, as the receiver is only the All-Giver in part and infancy.
    Ralph Waldo Emerson (1803–1882)