Hyperbolic Function - Standard Integrals

Standard Integrals

For a full list of integrals of hyperbolic functions, see list of integrals of hyperbolic functions.

\begin{align} \int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\ \int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\ \int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\ \int \coth (ax)\,dx &= a^{-1} \ln (\sinh (ax)) + C \\ \int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\ \int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left( \tanh \left( \frac{ax}{2} \right) \right) + C
\end{align}
\begin{align} \int {\frac{du}{\sqrt{a^2 + u^2}}} & = \sinh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{\sqrt{u^2 - a^2}}} &= \cosh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\tanh ^{-1}\left( \frac{u}{a} \right) + C; u^2 < a^2 \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\coth ^{-1}\left( \frac{u}{a} \right) + C; u^2 > a^2 \\ \int {\frac{du}{u\sqrt{a^2 - u^2}}} & = -a^{-1}\operatorname{sech}^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{u\sqrt{a^2 + u^2}}} & = -a^{-1}\operatorname{csch}^{-1}\left| \frac{u}{a} \right| + C
\end{align}

, where C is the constant of integration.

Read more about this topic:  Hyperbolic Function

Famous quotes containing the word standard:

    Gentlemen, those confederate flags and our national standard are what has made this union great. In what other country could a man who fought against you be permitted to serve as judge over you, be permitted to run for reelection and bespeak your suffrage on Tuesday next at the poles.
    Laurence Stallings (1894–1968)