Hyperbolic Function - Standard Integrals

Standard Integrals

For a full list of integrals of hyperbolic functions, see list of integrals of hyperbolic functions.

\begin{align} \int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\ \int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\ \int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\ \int \coth (ax)\,dx &= a^{-1} \ln (\sinh (ax)) + C \\ \int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\ \int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left( \tanh \left( \frac{ax}{2} \right) \right) + C
\end{align}
\begin{align} \int {\frac{du}{\sqrt{a^2 + u^2}}} & = \sinh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{\sqrt{u^2 - a^2}}} &= \cosh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\tanh ^{-1}\left( \frac{u}{a} \right) + C; u^2 < a^2 \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\coth ^{-1}\left( \frac{u}{a} \right) + C; u^2 > a^2 \\ \int {\frac{du}{u\sqrt{a^2 - u^2}}} & = -a^{-1}\operatorname{sech}^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{u\sqrt{a^2 + u^2}}} & = -a^{-1}\operatorname{csch}^{-1}\left| \frac{u}{a} \right| + C
\end{align}

, where C is the constant of integration.

Read more about this topic:  Hyperbolic Function

Famous quotes containing the word standard:

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)