Hyperbolic Function - Standard Integrals

Standard Integrals

For a full list of integrals of hyperbolic functions, see list of integrals of hyperbolic functions.

\begin{align} \int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\ \int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\ \int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\ \int \coth (ax)\,dx &= a^{-1} \ln (\sinh (ax)) + C \\ \int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\ \int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left( \tanh \left( \frac{ax}{2} \right) \right) + C
\end{align}
\begin{align} \int {\frac{du}{\sqrt{a^2 + u^2}}} & = \sinh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{\sqrt{u^2 - a^2}}} &= \cosh ^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\tanh ^{-1}\left( \frac{u}{a} \right) + C; u^2 < a^2 \\ \int {\frac{du}{a^2 - u^2}} & = a^{-1}\coth ^{-1}\left( \frac{u}{a} \right) + C; u^2 > a^2 \\ \int {\frac{du}{u\sqrt{a^2 - u^2}}} & = -a^{-1}\operatorname{sech}^{-1}\left( \frac{u}{a} \right) + C \\ \int {\frac{du}{u\sqrt{a^2 + u^2}}} & = -a^{-1}\operatorname{csch}^{-1}\left| \frac{u}{a} \right| + C
\end{align}

, where C is the constant of integration.

Read more about this topic:  Hyperbolic Function

Famous quotes containing the word standard:

    ... the meanest life, the poorest existence, is attributed to God’s will, but as human beings become more affluent, as their living standard and style begin to ascend the material scale, God descends the scale of responsibility at a commensurate speed.
    Maya Angelou (b. 1928)