Hyperbolic Function - Hyperbolic Functions For Complex Numbers

Hyperbolic Functions For Complex Numbers

Since the exponential function can be defined for any complex argument, we can extend the definitions of the hyperbolic functions also to complex arguments. The functions sinh z and cosh z are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers:

\begin{align} e^{i x} &= \cos x + i \;\sin x \\ e^{-i x} &= \cos x - i \;\sin x
\end{align}

so:

\begin{align} \cosh ix &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\ \sinh ix &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh ix &= i \tan x \\ \cosh x &= \cos ix \\ \sinh x &= - i \sin ix \\ \tanh x &= - i \tan ix
\end{align}

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period ( for hyperbolic tangent and cotangent).

Hyperbolic functions in the complex plane

Read more about this topic:  Hyperbolic Function

Famous quotes containing the words functions, complex and/or numbers:

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)

    When distant and unfamiliar and complex things are communicated to great masses of people, the truth suffers a considerable and often a radical distortion. The complex is made over into the simple, the hypothetical into the dogmatic, and the relative into an absolute.
    Walter Lippmann (1889–1974)

    Publishers are notoriously slothful about numbers, unless they’re attached to dollar signs—unlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.
    Hunter S. Thompson (b. 1939)