Hyperbolic Function - Hyperbolic Functions For Complex Numbers

Hyperbolic Functions For Complex Numbers

Since the exponential function can be defined for any complex argument, we can extend the definitions of the hyperbolic functions also to complex arguments. The functions sinh z and cosh z are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers:

\begin{align} e^{i x} &= \cos x + i \;\sin x \\ e^{-i x} &= \cos x - i \;\sin x
\end{align}

so:

\begin{align} \cosh ix &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\ \sinh ix &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh ix &= i \tan x \\ \cosh x &= \cos ix \\ \sinh x &= - i \sin ix \\ \tanh x &= - i \tan ix
\end{align}

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period ( for hyperbolic tangent and cotangent).

Hyperbolic functions in the complex plane

Read more about this topic:  Hyperbolic Function

Famous quotes containing the words functions, complex and/or numbers:

    The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.
    Ralph Waldo Emerson (1803–1882)

    Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.
    Michel Foucault (1926–1984)

    One murder makes a villain, millions a hero. Numbers sanctify, my good fellow.
    Charlie Chaplin (1889–1977)