Hydrogen Embrittlement - Process

Process

The mechanism starts with lone hydrogen atoms diffusing through the metal. At high temperatures, the elevated solubility of hydrogen allows hydrogen to diffuse into the metal (or the hydrogen can diffuse in at a low temperature, assisted by a concentration gradient). When these hydrogen atoms re-combine in minuscule voids of the metal matrix to form hydrogen molecules, they create pressure from inside the cavity they are in. This pressure can increase to levels where the metal has reduced ductility and tensile strength up to the point where it cracks open (hydrogen induced cracking, or HIC). High-strength and low-alloy steels, nickel and titanium alloys are most susceptible. Austempered iron is also susceptible. Steel with an ultimate tensile strength of less than 1000 MPa or hardness of less than 30 HRC are not generally considered susceptible to hydrogen embrittlement. Jewett et al. reports the results of tensile tests carried out on several structural metals under high-pressure molecular hydrogen environment. These tests have shown that austenitic stainless steels, aluminum (including alloys), copper (including alloys, e.g. beryllium copper) are not susceptible to hydrogen embrittlement along with few other metals. For example of a severe embrittlement measured by Jewett, the elongation at failure of 17-4PH precipitation hardened stainless steel was measured to drop from 17% to only 1.7% when smooth specimens were exposed to high-pressure hydrogen.

Hydrogen embrittlement can occur during various manufacturing operations or operational use - anywhere that the metal comes into contact with atomic or molecular hydrogen. Processes that can lead to this include cathodic protection, phosphating, pickling, and electroplating. A special case is arc welding, in which the hydrogen is released from moisture (for example in the coating of the welding electrodes; to minimize this, special low-hydrogen electrodes are used for welding high-strength steels). Other mechanisms of introduction of hydrogen into metal are galvanic corrosion, chemical reactions of metal with acids, or with other chemicals (notably hydrogen sulfide in sulfide stress cracking, or SSC, a process of importance for the oil and gas industries).

Read more about this topic:  Hydrogen Embrittlement

Famous quotes containing the word process:

    That which endures is not one or another association of living forms, but the process of which the cosmos is the product, and of which these are among the transitory expressions.
    Thomas Henry Huxley (1825–95)

    Experiences in order to be educative must lead out into an expanding world of subject matter, a subject matter of facts or information and of ideas. This condition is satisfied only as the educator views teaching and learning as a continuous process of reconstruction of experience.
    John Dewey (1859–1952)

    Yet I doubt not through the ages one increasing purpose runs,
    And the thoughts of men are widened with the process of the suns.
    Alfred Tennyson (1809–1892)