Hydraulic Analogy - Limits To The Analogy

Limits To The Analogy

If taken too far, the water analogy can create misconceptions. For it to be useful, we must remain aware of the regions where electricity and water behave very differently.

Fields
Electrons can push or pull other distant electrons via their fields, while water molecules experience forces only from direct contact with other molecules. For this reason, waves in water travel at the speed of sound, but waves in a sea of charge will travel much faster as the forces from one electron are applied to many distant electrons and not to only the neighbors in direct contact. In a hydraulic transmission line, the energy flows as mechanical waves through the water, but in an electric transmission line the energy flows as fields in the space surrounding the wires, and does not flow inside the metal. Also, an accelerating electron will drag its neighbors along while attracting them, both because of magnetic forces.
Charge
Unlike water, movable charge carriers can be positive or negative, and conductors can exhibit an overall positive or negative net charge. The mobile carriers in electric currents are usually electrons, but sometimes they are charged positively, such as H+ ions in proton conductors or holes in p-type semiconductors and some (very rare) conductors.
Leaking pipes
The electric charge of an electrical circuit and its elements is usually almost equal to zero, hence it is (almost) constant. This is formalized in Kirchhoff's current law, which does not have an analogy to hydraulic systems, where amount of the liquid is not usually constant. Even with incompressible liquid the system may contain such elements as pistons and open pools, so the volume of liquid contained in a part of the system can change. For this reason, continuing electric currents require closed loops rather than hydraulics' open source/sink resembling spigots and buckets.

James Thurber spoke of his maternal grandmother thus:

She came naturally by her confused and groundless fears, for her own mother lived the latter years of her life in the horrible suspicion that electricity was dripping invisibly all over the house. - My Life and Hard Times (1933).

Fluid velocity and resistance of metals
As with water hoses, the carrier drift velocity in conductors is directly proportional to current. However, water only experiences drag via the pipes' inner surface, while charges are slowed at all points within a metal. Also, typical velocity of charge carriers within a conductor is less than centimeters per minute, and the "electrical friction" is extremely high. If charges ever flowed as fast as water can flow in pipes, the electric current would be immense, and the conductors would become incandescently hot and perhaps vaporize. To model the resistance and the charge-velocity of metals, perhaps a pipe packed with sponge, or a narrow straw filled with syrup, would be a better analogy than a large-diameter water pipe. Resistance in most electrical conductors is a linear function: as current increases, voltage drop increases proportionally (Ohm's Law). Liquid resistance in pipes is not linear with volume, varying as the square of volumetric flow (see Darcy–Weisbach equation).
Quantum Mechanics
Conductors and insulators contain charges at more than one discrete level of atomic orbit energy, while the water in one region of a pipe can only have a single value of pressure. For this reason there is no hydraulic explanation for such things as a battery's charge pumping ability, a diode's voltage drop, solar cell functions, Peltier effect, etc., however equivalent devices can be designed which exhibit similar responses, although some of the mechanisms would only serve to regulate the flow curves rather than to contribute to the component's primary function.

Usefulness requires that the reader or student has a substantial understanding of the model (hydraulic) system's principles. It also requires that the principles can be transferred to the target (electrical) system. Hydraulic systems are deceptively simple: the phenomenon of pump cavitation is a known, complex problem that few people outside of the fluid power or irrigation industries would understand. For those who do, the hydraulic analogy is amusing, as no "cavitation" equivalent exists in electrical engineering. The hydraulic analogy can give a mistaken sense of understanding that will be exposed once a detailed description of electrical circuit theory is required.

One must also consider the difficulties in trying to make the analogy work. The above "electrical friction" example, where the hydraulic analog is a pipe filled with sponge material, illustrates the problem: the model must be increased in complexity beyond any realistic scenario.

Read more about this topic:  Hydraulic Analogy

Famous quotes containing the words limits to, limits and/or analogy:

    “... Ain’t it a caution to us not to fix
    No limits to what rose in rubbing sticks
    On fire to scare away the pterodix
    When man first lived in caves along the creeks?”
    “Marvelous world in nineteen-twenty-six.”
    Robert Frost (1874–1963)

    This teaching is not practical in the sense in which the New Testament is. It is not always sound sense in practice. The Brahman never proposes courageously to assault evil, but patiently to starve it out. His active faculties are paralyzed by the idea of caste, of impassable limits of destiny and the tyranny of time.
    Henry David Thoreau (1817–1862)

    The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.
    Gerald M. Edelman (b. 1928)