Hybrid (biology) - Hybrid Plants

Hybrid Plants

Plant species hybridize more readily than animal species, and the resulting hybrids are more often fertile hybrids and may reproduce, though there still exist sterile hybrids and selective hybrid elimination where the offspring are less able to survive and are thus eliminated before they can reproduce. A number of plant species are the result of hybridization and polyploidy with many plant species easily cross pollinating and producing viable seeds, the distinction between each species is often maintained by geographical isolation or differences in the flowering period. Since plants hybridize frequently without much work, they are often created by humans in order to produce improved plants. These improvements can include the production of more or improved; seeds, fruits or other plant parts for consumption, or to make a plant more winter or heat hardy or improve its growth and/or appearance for use in horticulture. Much work is now being done with hybrids to produce more disease resistant plants for both agricultural and horticultural crops. In many groups of plants hybridization has been used to produce larger and more showy flowers and new flower colors.

Many plant genera and species have their origins in polyploidy. Autopolyploidy results from the sudden multiplication in the number of chromosomes in typical normal populations caused by unsuccessful separation of the chromosomes during meiosis. Tetraploids or plants with four sets of chromosomes are common in a number of different groups of plants and over time these plants can differentiate into distinct species from the normal diploid line. In Oenothera lamarchiana the diploid species has 14 chromosomes, this species has spontaneously given rise to plants with 28 chromosomes that have been given the name Oenthera gigas. Tetraploids can develop into a breeding population within the diploid population and when hybrids are formed with the diploid population the resulting offspring tend to be sterile triploids, thus effectively stopping the intermixing of genes between the two groups of plants (unless the diploids, in rare cases, produce unreduced gametes).

Another form of polyploidy called allopolyploidy occurs when two different species mate and produce hybrids. Usually the typical chromosome number is doubled in successful allopolyploid species, with four sets of chromosomes the genotypes can sort out to form a complete diploid set from the parent species, thus they can produce fertile offspring that can mate and reproduce with each other but can not back-cross with the parent species. Allopolyploidy in plants often gives them a condition called hybrid vigour, which results in plants that are larger and stronger growing than either of the two parent species. Allopolyploids are often more aggressive growing and can be invaders of new habitats.

Sterility in a hybrid is often a result of chromosome number; if parents are of differing chromosome pair number, the offspring will have an odd number of chromosomes, leaving them unable to produce chromosomally balanced gametes. While this is a negative in a crop such as wheat, when growing a crop which produces no seeds would be pointless, it is an attractive attribute in some fruits. Bananas and seedless watermelon, for instance, are intentionally bred to be triploid, so that they will produce no seeds. Many hybrids are created by humans, but natural hybrids occur as well.

Read more about this topic:  Hybrid (biology)

Famous quotes containing the word plants:

    The holly and the ivy
    Are plants that are well known
    Of all the trees that grow in the woods
    The holly bears the crown.
    —Unknown. The Holly and the Ivy (l. 1–4)