Taylor Series
The derivative of the zeta in the second argument is a shift:
Thus, the Taylor series has the distinctly umbral form:
Closely related is the Stark–Keiper formula:
which holds for integer N and arbitrary s. See also Faulhaber's formula for a similar relation on finite sums of powers of integers.
Read more about this topic: Hurwitz Zeta Function
Famous quotes containing the words taylor and/or series:
“Alas! they had been friends in youth;
But whispering tongues can poison truth.”
—Samuel Taylor Coleridge (17721834)
“Depression moods lead, almost invariably, to accidents. But, when they occur, our mood changes again, since the accident shows we can draw the world in our wake, and that we still retain some degree of power even when our spirits are low. A series of accidents creates a positively light-hearted state, out of consideration for this strange power.”
—Jean Baudrillard (b. 1929)