Hurwitz Zeta Function - Relation To Jacobi Theta Function

Relation To Jacobi Theta Function

If is the Jacobi theta function, then

\int_0^\infty \left t^{s/2} \frac{dt}{t}=
\pi^{-(1-s)/2} \Gamma \left( \frac {1-s}{2} \right)
\left

holds for and z complex, but not an integer. For z=n an integer, this simplifies to

\int_0^\infty \left t^{s/2} \frac{dt}{t}=
2\ \pi^{-(1-s)/2} \ \Gamma \left( \frac {1-s}{2} \right) \zeta(1-s)
=2\ \pi^{-s/2} \ \Gamma \left( \frac {s}{2} \right) \zeta(s).

where ΞΆ here is the Riemann zeta function. Note that this latter form is the functional equation for the Riemann zeta function, as originally given by Riemann. The distinction based on z being an integer or not accounts for the fact that the Jacobi theta function converges to the Dirac delta function in z as .

Read more about this topic:  Hurwitz Zeta Function

Famous quotes containing the words relation to, relation, jacobi and/or function:

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.
    Andrei Codrescu (b. 1947)

    During the long ages of class rule, which are just beginning to cease, only one form of sovereignty has been assigned to all men—that, namely, over all women. Upon these feeble and inferior companions all men were permitted to avenge the indignities they suffered from so many men to whom they were forced to submit.
    —Mary Putnam Jacobi (1842–1906)

    It is not the function of our Government to keep the citizen from falling into error; it is the function of the citizen to keep the Government from falling into error.
    Robert H. [Houghwout] Jackson (1892–1954)